STATE BOCUMENTS

MONTANA STATE HIGHWAY DEPARTMENT HIGHWAY PLANNING SJRVEY IN COOPERATION WI TH PUBLIC ROADS ADMINISTRATION

ECONOMIC ANALYSIS OF THE MALTA* GRASS RANGE SECTION OF FEDERAL
AID RCUTE NO. 16

MONTANA CYATE LLAR
930 East frioll As nu.
Helena, M. I ana 5:501

MONTANA STATE HIGHWAY DEPARTMENT
 HIGHWAY PLANNING STRRVEY
 IN COOPERATION WI TH
 PUBLIC ROADS ADMINISTRATION

ECONOMIC ANALYSIS OF THE MALTA-
,
GRASS RANGE SECTION OF FEDERAL
AID ROUTE NO. 16

Digitized by the Internet Archive in 2012 with funding from Montana State Library

Montena State Highway Department Traffic and Planning Section
Public Roads Administration Basic Design Categories

Note: Roads having over 3500 vehicles per day require speciel design.

Table giving length of vertical curve required for various Non - passing sight distances

Decernber 18, 1943

GUIDES FOR ESTIMATING 1960 TRAFFIC

1． $100 \%=1941$ traffic．
2． $110 \%=$ Traffic if route is unim－ to proved at present time but 125% expected to be improved oy 1960.

3． 125%＝Treffic if route is unim－ to proved at present time but 150% expected to be improved by 1960.

4． 150% Traffic if route is unim－ to proved at present time but 200% expected to be improved by 1960.

Note：Date of expected improvement does not change traffic estimates for 1960.

Applies to：

F．A．，F．A．S．and Class $1,2, \& 3$ Forest Highways．Applies to sparcely settled rural areas．
（Add extra treffic generated by logging activities on timber utilization roads or other major industries and traffic induced by these activities）。

F．A．，F．A．S．and Class 1，2，\＆ 3 Forest Highways．Applies in checkerboard well－settled rural areas or on through－roads．
（Add extra traffic generated by logging activities on timber utilization rosds or other major industries and traffic induced by these activities）。

F．A．，F．A．S．and Class $1,2, \propto 3$ Forest Highways．This applies in exceptional cases such as bottle－ necks and natural cutoffs．Some cases，of course，might be much more but these special conditions would require special analysis．
（Add extra traffic Eenerated by logging activities on timber util－ ization roads or other major industries and traffic induced by these activities）。

```
\(130 \%\) = expected seculઘr growth 1941 to 1960 -- to be applied to ell above
    conditions except traffic
    Applies to all roads now constructed.
    (Without any of above increases)
    generated by logging activities,
    or other major industries.
```

Average summer maximum traffic equals dovible average ADT except on predominately recreational routes where factor might be as high as 3 ．
Average summer maximum traffic equals average of several maximum summer days．
Maximum hour equals 10% of maximum summer ADT．（Usual public traffic），or 15 to 20% on roads used by both the public and by major logging operations or other major industries．

TAELE OF CONTEM:S

Page

Guide ior Estimating Traffic :.................. ifi
I. STRMARY OF FINDITGS $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$

Premise for economic analuisis α quat zation of the routingo

Distance w directions and locazisn - present state of imnrovew ment - bridge site。

Association of traffic and vocational pursuits wom significance of traffic records in reference to ecomomic trends -- classification of traffic, $l o c a l$ and divertud,

A. Annual Cost Calculations $\quad 3-8$

Iu Completed work. 3

3. Mileage remaining, in adiation to that cited in sub.
paragraph, 2 , abova.

Basis construction experience 5
Deritration and discussion of constmation costs 6-7
Estimate of maintenance costs 8
B. Average Daily Traffic i 36 8-9
i. Existing trafilc......................... 8

3.All traffic. 8

C. Anmual Revenues o. 10m11

Source of basic data -- estir ato of income, 1960.
D. $\frac{\text { Time EIement Savings }}{\text { Factors which operate to save thi }} \begin{aligned} & \text { element savings. }\end{aligned}$

F. Traffic Benefits 16
Allocation of benefits by functions.
Go Derivation of Quotients $\frac{\text { Exnlanation of varicbles involved in the derivation of the }}{}$ several quotionts - - exnlanetion of the significance of the several quotients.
V. RECOMENDATION。 19
That work presently programmed in Phillips County be carried ono

```
EOONOMIC ANAIYSIS OF TRY NATYA
    GRASS RANGE SECTIOT OF FGNERAT
    AID RNITE NO, 15
```


I. SUMMARY OF FINDINGS

Ferevith report as per titio above using the principles of the Oregon "Solvency Quotient" method. By setting un a mathomatical relationship between estimated costs on the orie Fand and nossible future revenues and benefits on the other one arrives at a quotient rasultant, an inder so to speak, to aid in programmine funds for hishway construction. All the factors involved in the derivation of solvency quatients rrow out of or are influenced by the economy of the region touching on or afjoining the route under analysiso Any course of action recormended by the apnzication of the solvency quotient method is, therefore, premised on a business like nrocedure, ard it followso obviously, that such action will be in the greatest interest of the nublico In this particular analysis, the economic analysis shows that the Grass Rangeo Nalta routing is qualified for constmuctinn by a relatively high solvency quotients l.54.
II. ROUTE DESCRIPTICNS

The route being analyzed extends from Crass Range in Fergus County to Malta in Phillips County a total distancs of 109 miles, it oamprises the northerly section of the presently designated Ferderal Aid Primary Routo Noolb. Beginning near Grass Range the routing proceeds nuxth to a junction with F. A. Route No. 16 near Roy … via the nresent traveled way the distance is 26.6 miles, the route distarce is $2 \lambda .6$ mileso Fron tins point the routing goes northeasterly to the Missouri River, Grossinp at or near the present Wilcer Ferry site where it leaves Fergus County. The first. 5.7 miles of this interval, were graded and gravelled with Federal Aid in 1940; the 1ast 1800 miles are now tentatively programed for grading only. The total routo

distance in Fergus County is 46.3 miles. From the Wilder Ferry Site the routing bears north, - north-easterly via existing county roads to a point some three miles south of Phillips, a total designated route distance of 3504 miles; the northerly 6 miles of the latter mentioned interval are tentatively programmed for grading, gravelling and oil surfacingo The routing from the point 3 miles south of Phillips to the junction with $F_{0} A$. Route No. 1 in Malta is oil surfaced having been improved with Federal Aid in the period 1938-1942. Total designated route distance in Phillips County, 62.7 mileso It is probable that construction costs on the approaches to the proposed Missouri River Bridge will be quite high because the routing traverses a considerable section of the "breaks" of the Missouri River. Costs for the bridge proper will., no doubt, be high also -- this crossing site is below the "head of navigation" as designated by the War Department hence the clearance will have to be in the neighborhood of 50 feet in respect to normal water elevation.

III. TRAFFIC DATA

Traffic and vocational pursuits are inter-related to a remarkable degre the area traversed by the routing being analyzed leans to a farm-grazing economy throughout。 Generally speaking we cannot reasonably expect any great volume of local traffic on completion of the routing - the farms and ranches are too scattered, there is not a sufficient population to furnish or generate traffico farm-grazing as an industry does not nromote highway traffic. This is not to say that the region will be lacking in agricultural potentialities nor do we say that there will not be a significant growth in road use should the routing be completed at some time in the future. On reference to the "Traffic Estimation Guide", page iii, we find certain factors, empirical admittedly which when applied to existing traffic volumes, give an estimated average daily traffic in 1960 of 49 vehicles per day per mile throughout the length of the
routing．Traffic of interest，that is，traffic in excess of 50 vehicle a day extends over two intervals of the road；Grass Range to the junction with the Lewistown－Roy road a distance of 21.6 miles and from Malta South through Phillips and through that section tentatively programmed in Phillips County， a distance of 33 miles．Over the first mentioned section and for the year 1960 it is estimated that there will be 52 local vehicles per day and over the second cited interval there will be 103 vehicles per day．On the remaining 54.4 miles；nearly halfo the traffic will average 15 vehicles per day per mile。 Add to this an effective diversion of 91 vehicles per day to bring the total estimated traffic volume to 140 vehicles per day as of 1960。 Data in reference to possible diversions derive from an Originedestination study conducted in 1936－1937 at two study points，one near Maita and the other near Billings．of the total diversions about 20% will have originedestination in or near Lewistown and west or east of Malta on $U_{0} S_{0} 2_{0}$ the rest of the diversion will have origin－destination south of Grass Range on U．S． 87 and west or east of Malta on U．S．2。

IV．ECOMOMIC ANALYSTS
Now to determine the several variables which enter in the derivation of quotients to complete the economic enalysiso

A．Annual Cost Calculations
The status of the Malta－Grass Range routing in respect to mileage completed，mileage tentatively programmed and mileage remaining to be constr－ ucted in addition to that tentatively programed is as follows：

1．Completed work
a．Graded gravelled，oiled and drained， 78.0 mileso
b．Graded，gravelled and drained， 6.0 miles．

2．Tentatively progranmed

a．Grading，gravelling，oiling and installation of drainage
structures，6．0 miles。
b．Grading and installation of drainage structures， 18.0 miles。
c．Missouri River Bridge。
d。Under－pass at Malta。
3．Mileage Remaining in addition to that cited in sub paragraph， 2 above．
a．Grading，gravelling，oiling，and installation of drainage structures， 51.0 miles。
b。Gravelling and oiling， 18.0 miles．
c．Oiling， 6.0 miles．
Past construction＂experience＂in relation to costs of the completed work is as follows：

BASIC CONSTROCTION COSTS Malta - Grass Range

Project	Year	Miles	Grade	Bridges	Minor	Dr. Gravel	1. 011	Constr. Engin.	Total
$333-\mathrm{B}$	1940	5.682	\$38926		\$9815	\$30872		\$5907	
	1940	0.036		\$9548				699	
333 D(I)	$f(2) 1942$	6.398	19591		9008	45458	9908	8097	
		0.049		15379				1116	
333 C (2)	1942	10.559	205			19655	16305	2394	
		0.095		28933			-	2325	
333 C(1)	1940	10.559	40830		18106	60063		9098	
		. 095							
333 A(3)	1942	9.513	339			18509	15767	2291	
		0.093							
333 A (3)) 1942	0.056	5			198	224	28	
333 A(1)	1942	0.377	3837		894	4602	1519	71.8	
333 A(2)	1940	0.227	955			275		82	
333 A	1938	9.513	45876		10070	29998		7742	
$333 \mathrm{~A}(1)$	1938	0.056	496		319	626		130	
MC 911	1932	1.000	500			3750	1650	620	
$333 \mathrm{~A}(2)$	1940	0.030		21229				1706	
$\underline{333 \mathrm{~A}(1)}$	1938	0.089		22493				1693	
TOTALS		33.868	\$151560	\$97582	\$48212	\$214006 \$4	45373	\$44646	\$601379
Average Cost Per Mi。		33.868	\$4475	\$2881	\$1425	\$6319		\$1318	
Average	Costr Per Mi。	28.186	\$3996	\$3123	\$1362	\$6497	\$1610	\$1374	

Funds tentatively allocated, and based on engineering estimates which comprehend actual construction costs, engineering, over-head, purchase of Right of Way, and contingencies, are as follows:
Grading, drainage structures, $\quad 18.0$ miles @ $\$ 2,000 \quad \$ 360,000$

Grading, gravelling, oil surfacing \&
Drainage structures $\quad 60$ miles @ $\$ 28,333 \quad 170,000$
Missouri River Bridge, 400,000
Malta Under-pass,

Drawing on the "experience" data set forth immediately herebefore and allowing for a 25% increase in costs during the postmwar period, we estimate average costs per mile for the remaining work to be as follows:

Grading, gravelling, oiling, installation of drainage structures, 51 mileso
Grading $\$ 5,600$
Gravel Base and Surface 7,900
Minor Drainago Structures $\quad 1,800$
Major Structures (small bridges) $\quad 3,600$
Oil Surfacing $\quad 2,000$
Engineering and Administration $\quad I_{0} 700$
Right of Way $\quad 1,000$
Sub total................. $\$ 23,600$
Plus 10% for Contingencies.o.0.0... 2,360
Total estimated cost per mile, new constro $\$ 25$ 。960
Gravelling and Oiling, 18.0 miles.
Gravel Base and Surface $\quad 7,900$
Oil Surfacing 2,000
Engineering and Administration
Sub total $\$ 10,700$
Plus 10% for contingencies 1.070
Total estimated cost per mile, new construction $\$ 11,770$
Oil Surfacing
Oil surfacing$\$ 2,000$
Engineering and Administration 200
Sub total $\$ 2,200$
Plus 10% for contingencies 220
Total Estimated Cost per nile, new construction $\$ 2,420$
Construction

Sumarizing, construction costs, past and probable future, we have results as follows:

Past construction costs
\$601, 379
Tentatively programmed
Probable future Grading, gravelling, oiling, installation of drainage structures, 51 miles (2 $\$ 25,960$ Gravelling and oiling, 18 miles $\mathbb{\infty} \$ 11$, 770 Oiling, 6.0 miles @ $\$ 2,420$ Total estimated construction cost. $\$ 3,243,719$

In consideration of possible increased construction costs at some time in the future when the road will require reconstruction, interest at the rate of $2 \frac{1}{2} \%$ will be applied to the principal set forth hereabove。 Principal and interest in reference to the Missouri River Bridge and the Malta Under-pass costs will be retired in 40 years; other features of construction will be retired in

20 years. The annual capital cost for constraction cost will be as follows:

Missouri River Bridege

and Malta Underpass	$\$ 562,000 \times 0.0393$	$=\$ 22,368$
Other Construction	$\$ 2,681.719 \times 0.0649$	$=\$ 171,898$
Total Annual Capital Cost for construction	$=\$ 1942266$	

From data at hand in reference to maintenance costsy it is estimated that an annual charge of $\$ 250$ per mile will cover this item。 The total annual capital cost as of 1960 is ostimated to be $\$ 221,516,(194,263,27,250)$

Bo ATERAGE DAILY TRAFFIC， 1960
Traffic will comprise two categoxiess existing traffic and diverted traffic。

1．Existing traffic。
As of 1941 the average daily traffic mas recorded at 25 vehicles per day per mile over the full length of the present trovelled way， 130 miles． As a circumstance of completion of the routing and in consideration of nomal growth it is estimated that this traffic will be 49 vehicles ner day ner mile in 1960．（See Guide to Trarfic estimation page iii）

2．Diverted Traffic．
Fron data based on Origin－dostination studies conducted in 1936－193＇at study points rear malta and Billings it is estimated that，as of 1941， 52 passengers cars will divert to the Gress Range－Malta routingo Tracks，busses，and trailers combination were added ir the nronortion in which this traffic bears to the whole of traffic at the stuay points to bring the total of the diverted traffic to 70 vehicles ner day．This figure was in－ creased to 91 vehicles per day to allow for nomal traffic growtho（See Guide to Trarfic Estimation page iii）

3．All Traffic， 1960
The tabulation which follows presents estimated traffic along with route data，＂old＂and＂new＂。

1960

Average Daily Traffic

Vehicle Typo	```Route data (miles) old. distanca```	$\begin{aligned} & \text { : new } \\ & \text { idistance } \end{aligned}$	$\begin{aligned} & \hline: \\ & : \\ & : \\ & : 1941 \end{aligned}$	$\begin{aligned} & :-50 \% \\ & : \text { orr } \\ & : \text { compo } \\ & \text { : const } \end{aligned}$	$\begin{aligned} & \neq 30 \% \\ & 1960 \end{aligned}$
Existing Traffic	130	109		:	
Passenger cars local		:	$\therefore 15.5$:23.3	30.3
Passenger cars. Foreign		:	: 0.3	: 0.4	0.7
Passenger cars, All		:	${ }^{1} 15.8$: 23.7	31.0
Light Tmxcks		:	:7.6	. 11.4	14.8
Medium Trucks		:	$: 0.4$: 0.6	0.8
Heavy Trucks		:	-0.1	$: 0.2$	0.2
Trac。Tk. \& Semi Trailers		*	: 0.4	: 0.6	0.8
Trucks \& Full Trailers		:	$: 0.3$: 0.4	0.6
Busses		:	-0.4	-0.6	0.8
All trucks \& Busses		:	- 9.2	${ }^{13} 138$	18.0
All Traffic		:	- 25.0	- 37.5	49.0
Diverted Traffic	Variable	109	:	;	
		: 1	:	:	
Passenger Cars, iocal		:	: 41	: \quad :	54
Passenger Cars, Foreign		:	:11	: \quad	14
Passenger Cars, All		:	: 52	: \quad :	68
Light Trucks		:	:11.9	- :	15.2
Medium Trucks		:	: 0.7	:	0.9
Heavy Trucks		:	$: 0.1$:	0.1
Trac. Tkso- Semi-trlrs.		:	: 301	:	3.9
Trucks \& Full Trailers		\because	\% 1.6	\% :	2.1
Busses		:	: 0.6	:	0.8
All Trucizs \& Busses		:	:18.0	:	23.0
All traffic		:	$: 700$:	91.0

C. ANNTAL REVENTES

To arrive at an estimate of annual revenues, the traffic data were resolved in vehicle miles and then into ton miles. These data were extended on the basis of unit net revenues per ton mile to arrive at an estimate of the total annual revenue. Unit not revenue rates derive from a general study conducted by this departmento Average gross ton figures for each class of vehicle were ascertained in the course of research work by the Planning Survey。
HIGHVEY PROJECT ANALYSIS
Trafric Income

D. TIME ELSMENT SAVINGS

Time Element Savings accrue to traffic as a result of surface and alignment improvements and because of shortened travel distance. In this particular instance the "Existing Traffic" will be benefited by a decrease in travel distance of 21 miles and an improvement in surface type and alignment to allow an accelerated speed throughout the leneth of the improvement. The "Diverted Traffic" will be benefited by a composite travel distance decrease each trip of 165 miles to effect a great time saving--diverted traffic will not be materially benofited by surface type or alignment improvement. The tabulation follows hereinafter,

Time Element Savings

HIGHWAY PROJECT ANALYSIS

Location of nroject
Montana
County Fergus \& Phillins
Description of project Grass Pange-Malta
Fighway number FA No. 15 Partial Highway system FA Primary
Length \qquad Date of analysis February 1946

Existing Traffic Diverted Traffic Routes

Annual Traffic Volume
Private Passenger cars (nor Yoar) Trucks, light (per year).......... Trucks, medium (oer year) 00000. 1/ Trucks, heavy (per year) $0 \ldots \ldots$ Totals................... Private Passenger Cars
Average speed (miles per hour) 0.
Distance (miles)........................
Time (hours per trip) 0000000000 .
Time savings per vehicle.o.......
Value of savings (\$/vehicle-hour)
Annual traffic volume..............
Totalsooo.00000000.0.0
Trucks, light
Average speed (miles per hour).o.
Distance (miles)
Time (hours per trip)
Time savings per pehi
Value of savings (\$/vehicle-hour)
Annual traffic volume..............
Totals.

Trucks, Medium
Average speed (miles per hour)... Distance (miles)
Time (hours per trip)
Time savings per vehicle.
Value of savings (\$/vehicla....
Annual traffic volume Totals
Trucks, Heary
Average speed (miles per hour) 0 . Distance (miles)......................
Time (hours per trip)..............
Time savings per vehicle.0.0.0.0. Value of savings (\$/vehiclewhour)
Annual traffic volume..............

E. MILEAGE ELEMENT SAVINGS

These savings accrue to traffic considered in this analysis as a circumstance of improved surface type, improved alignment, and shortened travel distance. These improvements operate to decrease wear and tear on engines and tires; they make a gallon of gas stretch farther -- they are automotive functions and are of nrimo interost to the Highway Department because they are directly related to system condition. The savings are listed as follows:

Mileage Element Savings
HIGHVAY PROJECT ANALYSIS

Surface $2 /$
Roadway surface type 0 －．．．．．．．．．．．．．． Saving coefficient．。 Aver．annual traffic（ton－mio）．．． Saving（\＄／ton－mile） Total．

Aligrment 3／
Curvature rating 00000000000000000
Points improvement．0．00000000000．
Saving（point－ton－miles）．．．．．．．．
Saving（\＄／point－tonmile） 00000.
Total
Totalo．o．0．0．．．．．．．．．．
fotal annual miteage elenent savingis．

Mileage Element Savings（cont＇d）

$\$ 56,123 \quad \$ 307,796$ \qquad
\＄363，919 \qquad

1／In accord with procedures advanced by the Oregon Highway Department， Cost（\＄／ton－mile）are determined as follows：

Existing Traffic

Percentage of truck traffic，	$\frac{6570}{17886}$	$=$	36．7\％
Average gross weight trucks，	$\frac{32,439}{6,570}$		$\begin{aligned} & 4.937 \text { tons } \\ & 9874 \text { lbs. } \end{aligned}$

From Technical Bulletin No．7o Oregon Highway Department，Fig．113，find operating cost truck，average gross weight 9,874 lbs。 to be $\$ 0.0155$ per ton mile．The operating cost of passenger cars，as set forth in the bulletin is set at $\$ 0.0207$ per ton mile。Combining these costs in the proportions mani－ fest in this particular di stribution of traffic we have results as follows：

Trucks $_{z}(36.7 \%) \quad 0.367 \times \$ 0.0155=\$ 0.0057$
Passenger Cars，（63．3\％）0．633 $\times 0.0207=\underline{0.0131}$
Combined operating cost per ton mile all traffic $=\$ 0.0188$
Diverted Traffic
Percentage trucks $=\frac{8,395}{33,215}=25.3 \%$

Average gross weight trucks $=\frac{61,995}{8395}$	$=7.385$ tons
	$=14,770 \mathrm{lbs}$.

Operating cost per ton mile trucks in the above weight class is $\$ 0.0130$
Combining in the proportions manifest in this distribution of traffic we have results as follows：

Passenger Cars，(74.7%)	$0.747 \times \$ 0.0207$
Trucks，(25.3%)	$0.253 \times \$ 0.0130=\$ 0.0155$
Combined operating cost per ton mile	$=\$ 0.0033$
Co	$=\$ 0.0188$

2／Existing Traffic

In view of the fact that we have included those monies expended in 1938－1942 in the calculation of the annual capital cost we will start from ＂scratch＂in reference to the surface status of the existing road－－the coefficient is then adjudged to be 0.28 in line with procedures advanced by the Technical Bulletin．On completion of the routing the improvement coeffic cient will be 0.03 and the difference between these coefficients represents the＂Savings coefficient。＂This savings coefficient，when applied to the previously determined operating cost，$\$ 0.0188$ represents the savings in dollars per ton mile。

Diverted Traffic
That traffic which will be diverted to the new routing will not be benefited by an improvement in surface type－－for all practical purposes the present travelled way is deemed to be equal to the proposed routing inso－ far as surface type is concerned．

3／Existing Traffic

The routing，as it existed prior to any improvement is deemed to be entirely lacking in alignment features，zero as set forth in the tabulation。 On completion of the routing and in line with the dictates of standard rem quirements it is adjudged that the routing will have an alignment rating of
10. The difference between these ratings represents the "Points Improvement." Saving ($\$ /$ point-ton mile) derives from the findings set forth in the Oregon Technical Bulletin。

Diverted Traffic
No improvement insofar as aligrment features are concerned.

F. TRAFFIC BENEFITS

This tabulation involves an allocation of benefits to non-fuel functions and fuel functions in accord with the proportions advanced by the Oregon Highway Department。

Traffic Benefits

HIGHWAY DROJECT ANALYSIS

Distance savings	\$327, 304	38\%
Roadway surface savings	30, 191	41\%
Alignment savings	6,424	50\%

$\frac{\$ \frac{124,376}{12,378}}{3,212}$

Total Mileage Savings $\frac{\$ 363,919}{6}$
Time Element Factors

Type of Traffic

Passenger cars \qquad
Trucks, light Trucks, medium \qquad Trucks, heary \qquad
Total Time Savings
Recapitulation of Annual Benefits
Total Fuel Function Benefits \qquad $\$ 139,966$
Annual

Type of Traffic	Value of Time Savings
Passenger cars	\$ 65,146
Trucks, light	26,686
Trucks, medium	2,396
Trucks, heary	21,675
Total Time Savings	\$115,903
Recapitulation of Annual Benefits	
Total Fuel Function Benefits	
Non-fuel function(Mileage element factors $\begin{aligned} & \text { (Time element factors } \\ & \text { benefits }\end{aligned} \frac{\$ 23,953}{\$ 115,903}$	

Total Non-fuel Function Benefits \qquad \$339,856

TOTAL ANNUAL BENEFITS

G. DERIVATION OF QIJOTIENTS

With such factual data as we have assembled heretofore in reference to cost, income and benefits we are now enabled to draw out certain conclusions in reference to the economic solvency of the proposed routing.

HIGEWAY PROJECT ANALYSIS

I/ The constant K_{1} represents the pro rata cost chargeable to Road User Fund s .
2) The constant K_{2} represents the proportion of the total fuel savings which derives from use of the proposed improvement by diverted traffic. By reference to the tabulation of Mileage Element Savings we find that the fuel function benefits accruing to the diverted traffic are as follows:
-

$$
\text { Distance Savines, } 38=\$ 116,963
$$

Dividing this value by the total vel．of the moly serings as listed on the tabulation of＂Traffic Benefitis＂we arr＂ve is the corstant ∇ silue of K_{2} ． 0.84 。 3／The constant K_{3} ropresents the ratio of the furi tox to the total cast of fuel。

4／By applying the constant max $z=$ to the constant walue K_{3} we arrive at a resultant indicative of the deorbase in revenurs occasioned by construc－ tion of the proposed routingo

5／Application of the constant K to the celculated annual capital cost indicates that the total annusl carシtal 3^{*} s are to be naid out of road user funds．

6／The quotient $Q_{s,} 0.16$ in this case incicatos that the route，when built，will earn 16% of its costo

7／and 8／The quotient $Q_{B N}$ and up renmeserting normfuel benefits and fuel benefits respectively，show that the monetary valuos of these benefits will exceed the capital costs by 53% in tie first case and will equal almost two－thirds of the capital costs in the secord nsiance．

9／$Q^{\prime}{ }_{s}$ ropresents a correcter solvenoy quotiento The immediate effeot of diverting traffic to the routing vilil be to deccease revenues on the Lewistow－Great Fallss Havre－Mata ntwhervs－－this quotient cepresonts the relative solvency standing of the rotene as st，mould be if we were to ＂keep books＂on all the roads in the regich which are involved in the diversiono
$10 / Q_{c}$ represents the conposite guatient of tho anying when income and benefits in relation to costs are taken nto consideration $-\infty$ it is the true measure of the economic wo th of ary rrons sac routargo This statoment is conditioned on＂necessity＂of other elem， $1:$ of the highway system－in for
example，other parts of the highway system in the area are deficient by reason of wear and tears inadequate surface width short sight distances，poor align－ ment and other road features relating to mileage element or truly functional use，then these deficient intervals would govern in the allocation of funds in any program of highway improvement．However the composite quotient in this instance is sufficiently high torender it on a pare figuratively speak－ ing，with other improvement proposals in the area。 It is feasible but not truly necessary to build a road or routing when the comnosite quotient is unity，this－－generally speakings is indicative of a situation whereby benefits would equal anticipated revenue。 In other words，the benefits would operate to pay revenues，in which case the existing roads would serve adequately。 The composite quotient in this particular analysis is 1.55 ，a resultant which， from an economic standpoint would recomend the improvement of the route as a whole．As a point of intorest，if we extract the time element savings in the computation of the composite quotient we have a resultant quotient， 1.18 ， which shows the economic feasibility of building the routirp on the basis of mileage element or functional savines alone。

V．RECOMPEINDATIONS

> Pending comnletion of deficioncy studies on ail roads which are involved in the problem nosed by the necessity for additional Missouri River Crossings，it is recomended that the Phillips County road work as presently programed be carried on and that the nrograrmed road work in Fergus County be deferred．By so constracting along the route as proposed the Highway Cormission will have served to the outer limits of the existing＂traffic of interest＂while awaiting a decision in reforence to the＂necessity＂of other highway sections in the area．

